

Catálogo de Cursos

Correo: info@sisautomatizacion.com

Aramberri #604 Ote. Col. Centro Monterrey, N.L.

Cel. 812-009-6764

PLC Allen Bradley SLC-500 (MODULO BASICO) (24 HORAS)	3
PLC Allen Bradley SLC-500 (MODULO AVANZADO) (16 HORAS)	5
PLC ControlLogix 5000 (MODULO BASICO) (24 HORAS)	6
PLC ControlLogix 5000 (MODULO AVANZADO) (16 HORAS)	8
Automatización con PLC y Panel HMI (40 HORAS)	9
Variadores de Frecuencia POWERFLEX (16 HORAS)	11
nterfases HMI con FactoryTalk View Studio (16 HORAS)	12
PLC Siemens S7-1200 (MÓDULO BÁSICO) (24 HORAS)	13
PLC Siemens S7-1200 (MÓDULO AVANZADO) (16 HORAS)	14
PLC Siemens S7-300 (MÓDULO BÁSICO) (24 HORAS)	15
HMI Siemens con WinCC Flexible (16 HORAS)	17
Fundamentos de Electricidad Industrial (16 HORAS)	18
Máquinas Eléctricas (MOTORES) (16 HORAS)	20
nterpretación de Diagramas y Control Eléctrico (24 HORAS)	21
Neumática Básica (24 HORAS)	22
Hidráulica Básica (24 HORAS)	23
Electrónica Básica (24 HORAS)	25
Electrónica Digital (16 HORAS)	26
AutoCAD 2D (BASICO) (24 HORAS)	27
AutoCAD 3D (AVANZADO) (16 HORAS)	28

PLC Allen Bradley SLC-500 (MODULO BASICO) (24 HORAS)

OBJETIVOS DEL CURSO:

- Conocer las partes fundamentales de un sistema basado en controladores programables de la Familia SLC-500.
- Conocer la forma adecuada de instalar y configurar un equipo de Familia SLC-500.
- Aprender a comunicarse con el PLC con diferentes protocolos.
- Aprender el desarrollo de programación con PLC.
- Aplicar el respaldo de programa al PLC.
- Forzar señales de entradas y salidas.

TEMARIO:

- 1. Conceptos Básicos.
 - a. ¿Qué es un controlador programable?
 - b. Antecedentes históricos.
 - c. Ventajas y aplicaciones.
 - d. Señales que pueden manejar.
 - e. Diagrama a bloques de un Controlador Programable.
 - f. Teoría de barrido (scan).
- 2. Configuración de un sistema de PLC Familia SLC-500.
 - a. Familia de procesadores Allen Bradley.
 - b. Tipos de módulos de entradas y salidas.
 - c. Chasis y fuentes de poder
 - d. Configuración del sistema
- 3. Comunicación con el PLC SLC-500.
 - a. Software de comunicación RSLinx.
 - b. Comunicación por protocolo RS-232.
 - c. Comunicación por protocolo Ethernet.
- 4. Organización de la memoria y direccionamiento.
 - a. Direccionamiento de Entradas y Salidas.
 - b. Organización de Archivos.
 - c. Direccionamiento de la memoria.
- 5. Software de programación RSLogix 500
 - a. Funciones básicas y manejo de menús.
 - b. Configuración del sistema.
 - c. Creación de proyectos y manejo de herramientas de edición.
- 6. Funciones básicas.
 - a. Instrucciones tipo relevador.
 - b. Temporizadores
 - c. Contadores.
- 7. Mantenimiento y detección de fallas.

Correo: info@sisautomatizacion.com

- a. Diagnóstico de fallas mediante los indicadores del PLC (FAULT).
- b. Respaldo de programas en disco.
- c. Técnicas de búsqueda.
- d. Forzamiento de entradas y salidas.
- 8. Documentación y Generación de reportes.
 - a. Comentario por línea, instrucción y dirección.
 - b. Manejo de símbolos.
 - c. Generación e impresión de reportes.

PLC Allen Bradley SLC-500 (MODULO AVANZADO) (16 HORAS)

OBJETIVOS DEL CURSO:

- Aplicar funciones avanzadas de programación con el PLC SLC-500.
- Configurar los módulos analógicos.
- Desarrollar programas con módulos controladores de temperatura para termopares.
- Configurar y programar el Contador de alta velocidad para encoders.

TEMARIO:

- 1. Repaso de Conceptos Básicos.
 - a. Organización de la memoria y direccionamiento funciones básicas.
 - b. Software de programación RSLogix 500.
 - c. Creación de Archivos de Programa como Subrutinas.
- 2. Programación de Instrucciones Avanzadas.
 - a. Instrucciones de comparación.
 - b. Funciones matemáticas.
 - c. Secuenciadores.
 - d. Instrucciones de comunicación.
- 3. Procesamiento de Señales Analógicas.
 - a. Descripción general
 - b. Características del hardware
 - c. Programación del módulo
 - d. Direccionamiento Módulos de Entrada y Salida Analógicos.
 - e. Teoría de Operación de las Señales Analógicas.
- 4. Manejo de Modulo para Termopares
 - a. Descripción general
 - b. Rangos de entrada
 - c. Características del hardware
 - d. Los LED de diagnóstico
 - e. Descripción general del sistema
 - f. Programación del módulo
 - g. Direccionamiento del módulo
- 5. Manejo de Datos de Alta Velocidad.
 - a. Manejo de Tablas para Módulo Contador de Alta Velocidad.
 - b. Manejo de Encoder Incrementales.

Correo: info@sisautomatizacion.com

PLC ControlLogix 5000 (MODULO BASICO) (24 HORAS)

OBJETIVOS CURSO:

- Desarrollar las habilidades necesarias para detectar y corregir fallas en un sistema basado en PLC ControlLogix 5000.
- Aplicar el uso del Software de comunicación RSLinx con el PLC.
- Aprender a programar eficientemente las instrucciones lógicas básicas en diagramas de escalera.
- Aplicar el uso del Software para Configurar el 5000.
- Desarrollar las técnicas de programación y sus reglas generales, así como modificar la lógica de los diagramas de escalera.
- Conectar módulos de entradas y salidas al PLC.
- Forzar señales de entradas y salidas en el PLC 5000.

TEMARIO:

- 1. Introducción a los PLC 5000.
 - a. Componentes del sistema ControlLogix
 - i. Chasis
 - ii. Fuente de alimentación
 - iii. Tipos de Controladores (CPU)
 - iv. Módulos de comunicación
 - v. Módulos de E/S ControlLogix
 - b. Software
- 2. Cableado de módulos de E/S.
 - a. Nomenclatura de los módulos
 - b. Diagramas de conexión de módulos
- 3. Comunicación con el PLC ControlLogix.
 - a. Software de comunicación RSLinx.
 - b. Comunicación por USB
 - c. Comunicación por protocolo RS-232.
 - d. Comunicación por protocolo Ethernet.
- 4. Interfase del Software para ControlLogix
 - a. Creación de un proyecto
 - b. Organización del Controlador
 - c. Configuración de módulos de E/S
 - d. Direccionamiento de Entradas y Salidas
 - e. Cargar y Descargar programa al PLC
 - f. Crear etiquetas y monitoreo de datos de un proyecto
- 5. Funciones básicas.
 - a. Instrucciones tipo relevador.
 - b. Temporizadores.

Correo: info@sisautomatizacion.com

- c. Contadores.
- 6. Mantenimiento y detección de fallas.
 - a. Diagnóstico de fallas mediante los indicadores del PLC (FAULT).
 - b. Respaldo de programas en disco.
 - c. Técnicas de búsqueda.
 - d. Forzamiento de entradas y salidas.
- 7. Documentación y Generación de reportes.
 - a. Comentario por línea, instrucción y dirección.
 - b. Generación e impresión de reportes.

Correo: <u>info@sisautomatizacion.com</u> Aramberri #604 Ote. Col. Centro Monterrey, N.L.

Cel. 812-009-6764

PLC ControlLogix 5000 (MODULO AVANZADO) (16 HORAS)

OBJETIVOS CURSO:

- Aplicar funciones avanzadas de programación con el PLC 5000.
- Configurar los módulos analógicos.
- Desarrollar programas con módulos controladores de temperatura para termopares.

TEMARIO:

- 1. Repaso de Conceptos Básicos.
 - a. Sistemas ControlLogix 5000.
 - b. Control de acceso a datos, productor y consumidor de una etiqueta.
 - c. Software de programación RSLogix 5000.
 - d. Programas, Tareas y Subrutinas.
 - e. Comunicación con RSLinx por OPC.
- 2. Tipos de Datos e Instrucciones Add-On
- 3. Programación de Instrucciones Avanzadas.
 - a. Instrucciones de comparación.
 - b. Funciones matemáticas.
 - c. Secuenciadores.
 - d. Instrucciones de comunicación.
- 4. Procesamiento de Señales Analógicas.
 - a. Descripción general
 - b. Características del hardware
 - c. Programación del módulo
 - d. Direccionamiento Módulos de Entrada y Salida Analógicos.
 - e. Teoría de Operación de las Señales Analógicas.
- 5. Manejo de Modulo para Termopares.
 - a. Descripción general.
 - b. Rangos de entrada.
 - c. Características del hardware.
 - d. Los LED de diagnóstico.
 - e. Descripción general del sistema.
 - f. Programación del módulo.
 - g. Direccionamiento del módulo.

Automatización con PLC y Panel HMI (40 HORAS)

OBJETIVOS DEL CURSO:

- Conocer el hardware de la familia 5000.
- Aplicar el uso del Software de comunicación RSLinx y RSLogix 5000.
- Aprender las instrucciones lógicas básicas de temporización y contadores.
- Cargar y descargar de programa con PLC.
- Forzar señales de entradas y salidas en el PLC 5000.
- Desarrollo de pantallas con PanelView Plus y HMI Automation Direct.

TEMARIO:

- 1. Conceptos básicos.
 - a. Autómata programable ControlLogix 5000.
 - b. Componentes del sistema.
 - a. Controladores.
 - b. Módulos de comunicación.
 - c. Módulos de Entradas y Salidas.
 - d. Fuentes de Alimentación.
 - e. Chasis.
 - f. Software.
 - c. Cableado de Módulos de Entradas y Salidas.
- 2. Direccionamiento de señales de entrada, salida y áreas de memoria.
 - a. Teoría del barrido del programa (SCAN).
 - b. Tipos de datos y etiquetas del PLC.
 - c. Direccionamiento de señales de entrada y salida digitales.
- 3. Manejo del software de programación.
 - a. Configuración de la interfaz de comunicación (RSLinx).
 - b. Introducción a RSLogix 5000.
 - c. Configuración del hardware del sistema.
 - d. Establecer un enlace online.
 - e. Respaldar y cargar un programa.
- 4. Instrucciones de Relevación.
 - a. Examine si cerrado.
 - b. Examine si abierto.
 - c. Active de Salida.
- 5. Archivos de Datos de Temporizador.
 - a. Descripción general de las instrucciones de Temporizador.
 - b. Como Introducir parámetros.
 - c. Temporizador a la Conexión.
 - d. Temporizador a la Desconexión.
 - e. Temporizador Retentivo.

Correo: info@sisautomatizacion.com

- 6. Archivos de Datos de Contador.
 - a. Elementos del Archivo de Datos del Contador.
 - b. Como introducir parámetros.
 - c. Conteo Ascendente.
 - d. Conteo Regresivo.
 - e. Restablecimiento.
- 7. Visualización y forzado de entradas y salidas.
- 8. Vista General del Interfaz Hombre-Maguina (HMI).
 - a. Introducción a la PanelView Plus y Automation Direct.
 - b. Desarrollo de una aplicación.
 - c. Creación de un proyecto.
 - d. Trabajar con Etiquetas.
 - e. Configurar el Terminal y la Comunicación.
- 9. Trabajar con Objetos.
 - a. Crear Pulsadores.
 - b. Crear Controles de Entrada Numérica.
 - c. Crear Selectores de Pantalla.
 - d. Crear Indicadores y visualizadores Numéricos.
- 10. Transferir y Verificar Aplicaciones.
 - a. Verificar errores en la Aplicación.
 - b. Aplicar Download a la Terminal.
 - c. Aplicar Upload a la Terminal.

Variadores de Frecuencia POWERFLEX (16 HORAS)

OBJETIVOS DEL CURSO:

- Conocer los métodos de control de velocidad de un motor de Corriente Alterna.
- Aprender a dimensionar una aplicación con motores de Corriente Alterna.
- Usar Software Connected Components Workbench (CCW)
- Conocer los parámetros de programación del Variador de Velocidad.
- Realizar la conexión y configuración del Variador de Velocidad.

TEMARIO:

- 1. Teoría de funcionamiento de motores de Corriente Alterna.
 - a. Teoría del funcionamiento.
 - b. Comportamiento Velocidad / Torque.
 - c. Aplicaciones comunes.
 - d. Interpretación de los datos de placa de un motor.
- 2. Métodos de configuración de parámetros del variador de frecuencia.
 - a. Cargar/Descargar los parámetros.
 - b. Software Connected Components Workbench (CCW).
 - c. Parametrización manual del variador de frecuencia.
- 3. Variadores de Velocidad
 - a. Diagrama de bloques.
 - b. Conexión de un Variador de Velocidad.
 - c. Métodos de control del Variador.
 - d. Configuración.
 - e. Parámetros.
 - f. Terminal de Programación.
 - g. Arranque y puesta en marcha de un Variador de Velocidad.
- 4. Control del Variador desde un PLC a través de Ethernet.
 - a. Introducción a Ethernet.
 - b. Establecer una conexión Ethernet al variador PowerFlex 525.
 - c. Configurac<mark>ión de parámet</mark>ros del variador, arranque, paro y uso de una referencia de velocidad.

Correo: info@sisautomatizacion.com

Interfases HMI con FactoryTalk View Studio (16 HORAS)

OBJETIVOS DEL CURSO:

- Configuración de comunicación con un PLC usando RSLinx
- Conocer las herramientas de diseño gráfico y sus controles.
- Aprender a configurar textos desplegables numéricos y alfanuméricos y campos de entrada.
- Comprender el registro de actividades, alarmas y datos.

TEMARIO:

- 1. Generalidades del FactoryTalk View
 - a. Ventanas y Navegación
 - b. Objetos Simples: Líneas, Figuras, Texto, Botones.
 - c. Objetos Complejos: Bitmaps, Gráficas, Librería de Objetos.
 - d. Herramientas de Edición
- 2. Transferir y Verificar Aplicaciones.
 - a. Tipos de Extensiones de los archivos.
 - b. Aplicar Download y Upload a la Terminal HMI.
 - c. Modificación de Pantallas en Aplicación de la Terminal HMI.
 - d. Generación de Aplicación para la Terminal HMI.
- 3. Creación de Tags
 - a. Definición de Tags.
 - b. Condiciones de alarma para un Tag.
 - c. Tags "Placeholder"
 - d. Archivos de Parámetros
 - e. Referencia directa y tags OPC
 - f. Configuración de RSLinx
- 4. Controles de Animación (Links).
 - a. Pushbuttons.
 - b. Sliders.
 - c. Cambios de Color.
 - d. Color Fill.
 - e. Value Display.
- 5. Alarmas y Mensajes.
 - a. Configuración de Alarmas
 - b. Alarmas reconocidas / No Reconocidas.
 - c. Configuración de Mensajes.
 - d. Desplegado de Alarmas.
- 6. Gráficas.
 - a. Configuración de DataLogs.
 - b. Gráficas Tiempo Real.
 - c. Históricas o de Tendencia.

Correo: info@sisautomatizacion.com

PLC Siemens S7-1200 (MÓDULO BÁSICO) (24 HORAS)

OBJETIVOS DEL CURSO:

- Desarrollar las habilidades necesarias para detectar y corregir fallas en un sistema basado en PLC's de la familia SIMATIC S7-1200.
- Aplicar el uso del Software de TIA Portal con el PLC.
- Aprender a programar eficientemente las instrucciones lógicas básicas de diagramas de escalera.
- Desarrollar las técnicas de programación de estas y sus reglas generales, así como modificar la lógica de los diagramas de escalera.
- Forzar señales de entradas y salidas en el PLC.

TEMARIO:

- 1. Descripción general del Controlador S7-1200.
 - a. Descripción general del TIA Portal
 - b. Ejecución del programa del usuario.
 - c. Vista del TIA Portal.
- 2. Partes de un sistema de PLC S7-1200.
 - a. Tipos de CPU S7-1200.
 - b. Módulos de entradas y salidas integradas.
 - c. Conexión PROFINET.
 - d. Módulos de Expansión.
- 3. Configuración del dispositivo S7-1200.
 - a. Trabajar en la Vista Red y Topología.
 - b. Cargar y Descargar programa.
 - c. Configuración de parámetros del módulo E/S.
 - d. Configuración de la red por protocolo Ethernet.
- 4. Variables y tipos de datos.
 - a. Operandos y etiquetas y Direccionamiento.
 - b. Información general de los tipos de datos.
 - c. Bloques de programación (OB, FC, FB y DB).
- 5. Funciones básicas.
 - a. Operaciones lógicas con bits.
 - b. Temporizadores.
 - c. Contadores.
- 6. Mantenimiento y detección de fallas.
 - a. Diagnóstico de fallas mediante los indicadores del PLC (FAULT).
 - b. Respaldo de programas en disco.
 - c. Técnicas de búsqueda (Referencias cruzadas).
 - d. Forzamiento de entradas y salidas.

Correo: info@sisautomatizacion.com

PLC Siemens S7-1200 (MÓDULO AVANZADO) (16 HORAS)

OBJETIVOS DEL CURSO:

- Aplicar funciones avanzadas de programación con el PLC S7-1200.
- Configurar los módulos analógicos.
- Desarrollar programas con módulos controladores de temperatura para termopares.

TEMARIO:

- 1. Repaso de Conceptos Básicos.
 - a. Organización de la memoria y direccionamiento funciones básicas.
 - b. Software de programación TIA Portal.
 - c. Creación de Subrutinas.
- 2. Programación de Funciones Avanzadas.
 - a. Instrucciones de comparación.
 - b. Funciones matemáticas.
 - c. Secuenciadores.
 - d. Instrucciones de comunicación.
- 3. Procesamiento de Señales Analógicas.
 - a. Descripción general.
 - b. Características del hardware.
 - c. Programación del módulo.
 - d. Direccionamiento Módulos de Entrada y Salida Analógicos.
 - e. Teoría de Operación de las Señales Analógicas.
- 4. Manejo de Modulo para Termopares
 - a. Descripción general.
 - b. Rangos de entrada.
 - c. Características del hardware.
 - d. Los LED de diagnóstico.
 - e. Programación del módulo.
 - f. Direccionamiento del módulo.

Correo: info@sisautomatizacion.com

PLC Siemens S7-300 (MÓDULO BÁSICO) (24 HORAS)

OBJETIVOS DEL CURSO:

- Desarrollar las habilidades necesarias para detectar y corregir fallas en un sistema basado en PLC de la familia SIMATIC STEP7.
- Aplicar el uso del Software de SIMATIC Manager.
- Aprender a programar eficientemente las instrucciones lógicas básicas de diagramas de escalera.
- Desarrollar las técnicas de programación de estas y sus reglas generales, así como modificar la lógica de los diagramas de escalera.
- Forzar señales de entradas y salidas en el PLC.

TEMARIO:

- 1. Introducción a los PLC S7-300.
 - a. ¿Qué es un controlador programable?
 - b. Antecedentes históricos.
 - c. Señales que pueden manejar.
 - d. Teoría de barrido (scan).
- 2. Configuración de un sistema de PLC S7-300.
 - a. Familia de procesadores SIEMENS SIMATIC.
 - b. Tipos de módulos de entradas y salidas.
 - c. Fuentes de poder
 - d. Configuración del sistema
- 3. Comunicación con el PLC S7-300.
 - a. Comunicación por protocolo Ethernet.
 - b. Comunicación por protocolo MPI.
- 4. Organización de la memoria y direccionamiento.
 - a. Crear etiquetas y monitorear datos de un proyecto con el software.
 - b. Organización de Archivos.
 - c. Direccionamiento de la memoria.
 - d. Direccionamiento de Entradas y Salidas.
- 5. Software de programación SIMATIC Manager.
 - a. Funciones básicas y manejo de menús.
 - b. Creación de proyectos.
 - c. Manejo de herramientas de edición.
- 6. Funciones básicas.

Correo: <u>info@sisautomatizacion.com</u>

- a. Instrucciones tipo relevador.
- b. Temporizadores
- c. Contadores.
- 7. Mantenimiento y detección de fallas.
 - a. Diagnóstico de fallas mediante los indicadores del PLC (FAULT).
 - b. Respaldo de programas en disco.
 - c. Técnicas de búsqueda.
 - d. Forzamiento de entradas y salidas.

HMI Siemens con WinCC Flexible (16 HORAS)

OBJETIVOS CURSO:

• Desarrollar las habilidades necesarias para crear proyectos de WINCC FLEXIBLE para aplicaciones.

TEMARIO:

- 1. Generalidades del WINCC FLEXIBLE
 - a. Ventanas.
 - b. Objetos Simples: Líneas, Figuras, Texto, Botones
 - c. Objetos Complejos: Bitmaps, Gráficas, Librería de Objetos
 - d. Herramientas de Edición
 - e. Creación de Tags
 - f. Definición de Tags
 - g. Tipos de Tags
 - h. Campos
 - i. Condiciones de Alarma para un Tag
 - j. Configuración de Comunicaciones
 - k. Convenciones de Direccionamiento a PLC's SIEMENS
- 2. Controles de Animación (Links).
 - a. User Inputs
 - b. Sliders
 - c. Pushbuttons
 - d. Cambios de color
 - e. Color Fill
 - f. Value Display
- 3. Alarmas y Mensajes.
 - a. Configuración de Alarmas
 - b. Alarmas rec<mark>onocidas / No Reconocidas</mark>
 - c. Configuración de Mensajes
 - d. Desplegado de Alarmas
- 4. Gráficas.
 - a. Configuración de DataLogs
 - b. Gráficas Tiempo Real
 - c. Configuración de Seguridad

Fundamentos de Electricidad Industrial (16 HORAS)

OBIETIVO:

- Saber qué es un circuito eléctrico y las partes que lo componen.
- Conocer cuáles son las magnitudes eléctricas más importantes.
- Aplicar correctamente la ley de Ohm.
- Saber qué es un sistema eléctrico monofásico y uno trifásico y la relación entre ambos.
- Conocer los componentes pasivos y su relación con la corriente alterna.
- Aprender qué representa la potencia eléctrica y los diferentes tipos de potencias.
- Saber qué es el factor de potencia y cómo mejorarlo.
- Entender en forma práctica lo que sucede al conectar dispositivos en diferentes configuraciones.
- Conocer los diferentes aparatos de medida de magnitudes eléctricas y cómo se deben emplear.
- Conocer los principios de seguridad en las mediciones eléctricas.

TEMARIO:

- 1. El circuito eléctrico
- 2. Magnitudes eléctricas
 - a. Voltaje eléctrico
 - b. Intensidad eléctrica
 - c. Resistencia eléctrica
- 3. La ley de Ohm
- 4. Corriente continua y corriente alterna
- 5. Los sistemas monofásicos y trifásicos
- 6. Los componentes pasivos
 - a. La resistencia
 - b. La bobina
 - c. El condensador
 - d. Circuitos de corriente alterna
- 7. La potencia eléctrica
 - a. La potencia en corriente directa
 - b. La potencia en corriente alterna monofásica
 - c. La potencia en corriente alterna trifásica
- 8. El triángulo de potencias
- 9. Mejora del factor de potencia
 - a. Mejora del factor de potencia en corriente alterna monofásica
 - b. Mejora del factor de potencia en corriente alterna trifásica
- 10. Los aparatos de medición eléctrica
 - a. Medición eléctrica
 - b. Medición de la tensión eléctrica
 - c. Medición de la corriente eléctrica

Correo: info@sisautomatizacion.com

- d. Medición de la resistencia eléctrica
- e. El multímetro
- f. Medición de la potencia
- g. Medición del factor de potencia
- h. Medición de la frecuencia
- i. Medición de la energía
- j. Medición de la resistencia de aislamiento
- k. Medición de la resistencia de puesta a tierra
- 11. Seguridad en las medidas eléctricas
 - a. Las categorías de los aparatos de medición
 - b. Consideraciones practicas

Máquinas Eléctricas (MOTORES) (16 HORAS)

OBJETIVO GENERAL:

- Comprender la operación adecuada en forma segura de los motores eléctricos.
- Diferenciar y describir los motores de CD y CA.
- Realizar conexión de motores trifásicos.
- Uso de aplicación para conexión simulada de arranque de motores.

TEMARIO:

- 1. Introducción a las máquinas eléctricas de CD y CA.
- 2. Maquinas eléctricas CD.
- 3. Características de los generadores de CD de acuerdo con la excitación.
- 4. Características de los motores de CD de acuerdo con su excitación.
- 5. Sentido de rotación de una máquina con devanado de excitación tipo derivación trabajando como motor y como generador.
- 6. Sentido de rotación de una máquina con devanado de excitación tipo serie trabajando como motor y como generador.
- 7. Fallas típicas de las máquinas de CD.
- 8. Máquinas de corriente alterna (Teoría Básica).
- 9. Principios de operación de un motor monofásico de CA.
- 10. Motor de inducción trifásica.
- 11. Arranque de motores trifásicos de CA
- 12. Identificación de embobinado en motores trifásicos.
- 13. Practica de conexión de motores trifásico de 6, 9 y 12 terminales.
- 14. Uso de software de simulación para motores trifásicos.

Correo: info@sisautomatizacion.com

Interpretación de Diagramas y Control Eléctrico (24 HORAS)

OBIETIVOS:

- Conocer los componentes de control eléctrico.
- Aprender simbología eléctrica.
- Uso de software para simulación de arrangue de motores.
- Realizar conexión de circuito de control eléctrico para arranque de motores trifásicos.

TEMARIO:

- 1. Componentes del circuito de control.
 - a. Transformador de control.
 - b. Pulsadores.
 - c. Lámparas de señalización.
 - d. Fusibles.
 - e. Interruptor termomagnético.
 - f. Relevadores.
 - g. Temporizadores.
 - h. Contactores.
 - i. Guardamotor.
- 2. Diseño de Diagramas, Conexiones y Símbolos.
 - a. Símbolos de un circuito de control.
 - b. Diagramas de línea y de alambrado.
- 3. Sistemas de arranque para motores eléctricos.
 - a. Circuito de fuerza y circuito de mando.
 - b. Arranque a tensión plena.
 - c. Control automático y manual.
 - d. Arranque en secuencia.
 - e. Estación de botones múltiples.
 - f. Pulsación momentánea.
 - g. Inversión manual de rotación.
 - h. Inversión automática de rotación.
 - i. Arrangue con temporizador.
 - j. Arranque automático reversible.
 - k. Arranque estrella-delta.
- 4. Software de simulación de arranque de motores.
- 5. Practica de conexión de circuito para arrangue de motores.

Correo: info@sisautomatizacion.com

Neumática Básica (24 HORAS)

OBJETIVO GENERAL:

- Conocerá las características fundamentales y la generación del aire comprimido
- Aplicar el control del sistema tomando en consideración las medidas de seguridad requeridas.
- Conocer la simbología neumática.
- Interpretar diagramas de circuitos neumáticos.
- Usar software de simulación de circuitos neumáticos.

TEMARIO:

- 1. Conceptos Fundamentales
- 2. Producción del Aire Comprimido
- 3. Preparación del Aire Comprimido
- 4. Fundamentos de elementos neumáticos.
 - a. Válvulas de Control de Presión
 - b. Válvulas de Control de Flujo
 - c. Válvulas de Control Direccional
 - d. Actuadores
 - e. Tubería y Mangueras
- 5. Simbología neumática.
- 6. Circuitos Neumáticos Básicos
- 7. Software de simulación de circuitos neumáticos.

PRÁCTICAS:

- Identificación de los elementos componentes de un sistema de aire comprimido.
- Operación y control del compresor.
- Operación del tanque de almacenamiento de acuerdo con la Norma NOM-020 de la Secretaría del Trabajo y Prevención Social.
- Operación y mantenimiento de los secadores de aire.
- Operación de la Válvula de control de presión.
- Operación de la Válvula de control de flujo.
- Operación de la Válvula de control direccional.
- Análisis de operación de los actuadores.
- Elaboración de un circuito neumático.
- Elaboración de un diagrama de un sistema neumático.

Correo: info@sisautomatizacion.com

Hidráulica Básica (24 HORAS)

OBIETIVO:

- Conocerá las características fundamentales de los sistemas hidráulicos.
- Aplicar el control del sistema tomando en consideración las medidas de seguridad requeridas.
- Conocer la simbología hidráulica.
- Interpretar diagramas de circuitos hidráulicos.
- Usar software de simulación de circuitos hidráulicos.

TEMARIO:

- 1. Conceptos fundamentales
 - a. Hidráulica
 - b. Hidrodinámica
 - c. Hidrostática
 - d. Fluidos
 - e. Fuerza
 - f. Masa
 - g. Peso
 - h. Densidad
- 2. Presión
 - a. Origen de la presión
 - b. Tipos de presión
 - i. Presión absoluta
 - ii. Presión relativa (manométrica)
 - iii. Presión atmosférica
 - c. Medición de un vacío
- 3. Viscosidad
 - a. Índice de viscosidad
 - b. Importancia de la viscosidad
 - c. Métodos para definir la viscosidad
- 4. Principios de la Hidráulica
 - a. Principio de Arquímedes
 - b. Principio de Pascal
 - c. Conservación de la energía
 - d. Principios de flujo
- 5. Propiedades de los Fluidos Hidráulicos.
 - a. Definición y funciones principales del fluido.
 - b. Ventajas y desventajas de la hidráulica.
- 6. Elementos de un Sistema Hidráulico.

Correo: info@sisautomatizacion.com

- a. Unidad de alimentación.
- b. Motores y Bombas hidráulicas.
- c. Cilindros o Actuadores.
- d. Válvulas hidráulicas.
- e. Tuberías.
- 7. Simbología Hidráulica.
- 8. Circuitos Hidráulicos Básicos.
- 9. Software de simulación de circuitos hidráulicos.

PRÁCTICAS:

- Identificación de los elementos componentes de un sistema hidráulico.
- Operación de la unidad de alimentación hidráulica.
- Operación de la Válvula de control de presión.
- Operación de la Válvula de control de flujo.
- Operación de la Válvula de control direccional.
- Análisis de operación de los actuadores.
- Elaboración de un circuito hidráulico.
- Elaboración de un diagrama de un sistema hidráulico.

Electrónica Básica (24 HORAS)

OBJETIVO GENERAL:

- Conocer los principales dispositivos electrónicos
- Identificar simbología electrónica
- Conectar elementos electrónicos de acuerdo con el diagrama.
- Usar software de simulación de circuitos electrónicos.
- Practicar para la construcción de fuentes de alimentación.

TEMARIO:

- 1. Introducción a la electrónica.
- 2. Resistencias Fijas y Variables.
- 3. Capacitores Cerámicos y/o Electrolíticos.
- 4. Transformadores.
- 5. Diodo Semiconductor.
- 6. Diodos Emisores de Luz "LED's".
- 7. Puentes Rectificadores.
- 8. Reguladores de Voltaje Fijos y/o Variables.
- 9. Fuente de Alimentación de Media Onda, Onda Completa, Onda Completa Tipo Puente.
- 10. Fuente de alimentación regulable.
- 11. Transistores (NPN, PNP).
- 12. Temporizador 555.

PRÁCTICAS:

- Código de colores de la resistencia y conexión de resistencias variables.
- Verificación de valores característicos de capacitores JIS.
- Identificación de diferentes transformadores y comprobar su estado.
- Identificación física de los diodos y comprobación de su estado mediante multímetro.
- Identificar diferentes tipos de diodos emisores de luz.
- Mediación de Voltajes en diferentes tipos de fuentes (voltaje de entrada y salida).
- Medición de Voltajes en los diferentes tipos de reguladores (fijos y variables).
- Construcción de fuente de alimentación de media onda, onda completa.
- Construcción de fuente de alimentación regulable.
- Identificación de terminales NPN y PNP.
- Aplicación de transistores bipolares a circuitos electrónicos.
- Armado de circuitos electrónicos en Protoboard.
- Usar software de simulación para circuitos electrónicos.

Correo: info@sisautomatizacion.com

Electrónica Digital (16 HORAS)

OBJETIVO GENERAL:

- Conocer los fundamentos de los sistemas digitales.
- Desarrollar e implementar circuitos combinacionales
- Utilizar elementos básicos como compuertas lógicas, decodificadores, contadores secuenciales, y el display entre otros elementos de diseño digital.

TEMARIO:

- 1. Álgebra Booleana.
- 2. Circuitos Integrales (Introducción).
- 3. Operadores Lógicos (AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR).
- 4. Expresiones Booleanas.
- 5. Teorema de D'Morgan.
- 6. Expresiones NOR's NAND's.
- 7. Identidades.
- 8. Sistemas Numéricos.
- 9. Contador.
- 10. Display.
- 11. Flip Flops.

PRÁCTICAS:

- Obtener la ecuación a partir del circuito.
- Obtener el circuito a partir de la ecuación.
- Obtener las compuertas CI lógicas la tabla de verdad.
- Aplicar el teorema de Morgan.
- Desarrollar ejemplos de diseño.
- Interpretar un sistema combi nacional.
- Practicar de Flip Flops.
- Generador de pulsos.
- Contadores binarios (contadores sincrónicos y asincrónicos).
- Comprobar funcionamiento de Flip Flops.

Correo: info@sisautomatizacion.com

AutoCAD 2D (BASICO) (24 HORAS)

OBJETIVO:

- Desarrollar la habilidad para realizar gráficamente componentes de piezas mecánicas o layout de arquitectura en 2D.
- Conocer como modificar un dibujo previamente realizado.
- Aplicar las escalas en dibujos.
- Conocer como imprimir a escala en AutoCAD.

TEMARIO:

- 1. Introducción a AutoCAD
- 2. Configuración de dibujo en AutoCAD.
- 3. Comandos y Barras de Herramientas.
- 4. Sistema de Coordenadas.
- 5. Referencia a Objetos.
- 6. Propiedades de Objetos.
- 7. Creación y Uso de Blocks.
- 8. Layers.
- 9. Texto.
- 10. Acotación.
- 11. Ventanas Gráficas.
- 12. Escalas de Trabajo.
- 13. Imprimir.
- 14. Atributos y Segmentos.
- 15. Dibujo en Isométrico.

PROPOSITOS GENERALES:

El alumno deberá ser capaz de generar dibujos de piezas mecánicas o dibujo de arquitectura en 2D mediante el uso de software de CAD. Lo cual lo prepara para entender software de CAD / CAM (simulación de maquinado) o paquetes donde es necesario el uso de piezas u objetos en 2D.

Correo: info@sisautomatizacion.com

AutoCAD 3D (AVANZADO) (16 HORAS)

OBIETIVO:

- Desarrollar la habilidad para realizar gráficamente componentes de piezas mecánicas o planos arquitectónicos en 3D.
- Conocer coordenadas tridimensionales.
- Aplicar las vistas en dibujos.
- Crear dibujo y objetos en 3D.
- Aplicar Render.

TEMARIO:

- 1. Repaso a AutoCAD 2D
- 2. Especificando coordenadas en 3D
 - a. Usando la regla de la mano derecha
 - b. Introduciendo coordenadas X, Y, Z
 - c. Introduciendo coordenadas cilíndricas
 - d. Introduciendo coordenadas esféricas
- 3. Usando Vistas y Proyecciones Estándar en 3D
- 4. Definiendo un sistema de coordenadas de usuario (UCS)
 - a. Definiendo un UCS en espacio 3D
 - b. Usando un UCS predefinido ortográficamente
 - c. Moviendo un UCS
 - d. Asignando un UCS a un Viewport
- 5. Trabajando con vistas en 3D
 - a. Usando vistas ortográficas
 - b. Especificando opciones de despliegue de gráficos en 3D
 - c. Vistas interactivas en 3D
- 6. Creando dibujo en Wireframes
 - a. Creando Mallas
 - b. Creando malla con superficie predefinida
 - c. Creando una malla rectangular, superficie rígida, superficie tabulada.
 - d. Creando una superficie de malla de revolución, de borde definido.
- 7. Estableciendo la elevación y el espesor
- 8. Creando Objetos en 3D
 - a. Creando una caja sólida, cono, cilindro, esfera, dona y cuñas solidas.
- 9. Modificación de sólidos.
 - a. Creando un solido proyectado y de giro.
 - b. Rotar en 3D.
 - c. Simetrías, chaflanes y redondeos en 3D.

Correo: info@sisautomatizacion.com

- 10. Proyección de caras.
 - a. Mover, rotar, eliminar, copiar, colorear caras.
- 11. Uso de Render o Foto realismo.
 - a. Aplicación de materiales, luces, personas.
 - b. Animación con AutoCAD.

PROPOSITOS GENERALES:

El alumno deberá ser capaz de generar dibujos de piezas mecánicas o planos arquitectónicos en 3D mediante el uso de software de CAD. Realizara videos con movimientos en 3D.

Correo: <u>info@sisautomatizacion.com</u> Aramberri #604 Ote. Col. Centro Monterrey, N.L.

Cel. 812-009-6764